Gait recognition based on shape and motion analysis of silhouette contours
نویسندگان
چکیده
This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods.
منابع مشابه
A Novel Approach on Silhouette Based Human Motion Analysis for Gait Recognition
This paper presents a novel view independent approach on silhouette based human motion analysis for gait recognition applications. Spatio-temporal 1-D signals based on the differences between the outer of binarized silhouette of a motion object and a bounding box placed around silhouette are chosen as the basic image features called the distance vectors. The distance vectors are extracted using...
متن کاملA Novel Gait Recognition Method Via Fusing Shape and Kinematics Features
Existing methods of gait recognition are mostly based on either holistic shape information or kinematics features. Both of them are very important cues in human gait recognition. In this paper we propose a novel method via fusing shape and motion features. Firstly, the binary silhouette of a walking person is detected from each frame of the monocular image sequences. Then the static shape is re...
متن کاملA New Approach for Human Identification Using Gait Recognition
Recognition of a person from gait is a biometric of increasing interest. This paper presents a new approach on silhouette representation to extract gait patterns for human recognition. Silhouette shape of a motion object is first represented by four 1-D signals which are the basic image features called the distance vectors. The distance vectors are differences between the bounding box and silho...
متن کاملModel-based Gait Recognition
Model-based Gait Recognition concerns identification using an underlying mathematical construct(s) representing the discriminatory gait characteristics (be they static or dynamic), with a set of parameters and a set of logical and quantitative relationships between them. These models are often simplified based on justifiable assumptions such as the system only accounts for pathologically normal...
متن کاملHuman Motion Analysis Using Eroded and Restored Skeletons
Skeleton has been found a very useful feature in human motion analysis and gait recognition. However, it is usually hard to obtain the right feature skeleton because of shape variance of human silhouette and noise. Due to those reasons, unexpected skeleton branches will exist together with the main components of human body. To delete the unexpected branches, a silhouette reconstruction method i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Vision and Image Understanding
دوره 117 شماره
صفحات -
تاریخ انتشار 2013